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An ab initio theoretical method is derived for calculating the maximal Lyapunov exponent of anN-body
system obeying Hamilton’s equations. The theory is developed in detail for a dilute gas. It shows the Lyapunov
exponent to be a function of the time integral of the correlation function for fluctuations in the second
derivative of the interparticle potential~approximately a power13 law!. We apply the theory to a one-
component plasma and derive the dependence of the Lyapunov exponent on a plasma parameter.
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I. INTRODUCTION

A. Motivation

The Gibbs ensemble in statistical mechanics serves as a
microscopic formulation of equilibrium thermodynamics; the
fluctuation-dissipation theorem provides a microscopic con-
nection to the system response functions and transport coef-
ficients that characterize small departures from equilibrium.
Far from equilibrium, Lyapunov expansion is a property with
the potential to provide a useful microscopic description
when local definitions of quasiequilibrium quantities, such as
temperature and pressure, may no longer have meaning. To
be useful, we must establish two things: a viable definition of
the Lyapunov expansion, local in phase space@1#, and a rig-
orous connection between the Lyapunov expansion and mac-
roscopic properties of a system out of equilibrium. This pa-
per makes the latter connection in the near-equilibrium
regime.

Intuitively, the connection is plausible. The Lyapunov ex-
ponent measures the rate at which a system ‘‘forgets’’ its
initial conditions. The transport coefficients are those re-
sponse functions of the system that also measure a ‘‘forget-
ting.’’ For example, scattering erases a particle’s memory of
its original velocity and so gives rise to a finite self-diffusion
coefficient@2#.

The work reported here creates anab initio N-body mi-
croscopic theory of the microscopic Lyapunov exponent.
The method is quite general and in future work we plan to
apply it to anharmonic crystals. Here we develop the theory
for a dilute gas or unmagnetized plasma. It gives an explicit
functional relationship to a correlation function~a 1

3 power
law!, in the limit of thermal equilibrium. Thus the Lyapunov
exponent is related to system fluctuations. By way of de-
tailed example, we applied the theory to a one-component
plasma. We have compared the theoretical predictions with a
numerical simulation of the plasma, performed by Nishihara
and co-workers @2–4# using SCOPE, a particle-particle
particle-mesh program, adapted to compute the Lyapunov
exponent.

B. Background

A classical system ofN particles in three dimensions has
3N momenta and 3N position coordinates. We shall write

them as the 3N-dimensional vectorsp and q, respectively.
We may represent these by a phase pointY[~p

q!, in 6N-
dimensional phase space. For simplicity, we shall assume
that the particles have unit mass and a Hamiltonian of the
formH5 1

2p•p1V~q!. Hamilton’s equations of motion for the
system are

Ẏ[S ṗqD5S 2Vq

p D[G~Y!, ~1!

where the notationVq means the 3N gradient in the coordi-
nates]V/]q.

The detailed evolution of a system of interacting particles
is, typically, very sensitive to changes in initial conditions.
The Lyapunov exponent quantifies this sensitivity as follows.
Consider a reference trajectory whose phase-space point at
time t is Y(t). At time t50 let another identical system be
started that is displaced infinitesimally from the reference
trajectory byD~0!. This displaced trajectory will evolve in
time toY(t)1D(t) ~see Fig. 1!. SinceD(t) is infinitesimal,
its equation of motion is given by the derivative of Hamil-
ton’s equation

Ḋ~ t !5
]G„Y~ t !…

]Y
•D~ t ![J„Y~ t !…•D~ t !. ~2!

In sensitive systems, the displaced trajectory diverges from
the reference system exponentially, on average. The mean
exponential divergence rate is defined by@5#

l„Y~0!,D~0!…5 lim
t→`

uD~0!u→0

1

t
ln

uD~ t !u
uD~0!u

. ~3!

FIG. 1. Displaced trajectory diverging from the reference trajec-
tory.
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There is a 6N-dimensional basis$êi% of theD~0! such that for
any givenY~0!, l takes on one of the 6N ~possibly non
distinct! values

l i„D~0!…5l i„D~0!,êi…. ~4!

These are the Lyapunov characteristic exponents. They can
be ordered by size

l1>l2>•••>l6N . ~5!

Except for a set of measure zero, an arbitraryD~0! will al-
ways have a component in theê1 direction. Ifl1.0, then, in
the limit t→`, the largest exponent will dominate and adja-
cent trajectories will diverge exponentially at a ratel1. This
is characteristic of a sensitive dependence on initial condi-
tions. In what follows we shall be dealing with the maximal
Lyapunov exponent only and we shall drop the subscript;D
will refer to any particular initial displacement direction~al-
most all! that expresses the maximal Lyapunov exponentl.

Other authors have sought analytic expressions for
Lyapunov exponents of many-body systems. Evans@6# has
derived a short-time formula to describe the mean separation
of close adjacent trajectories. The formula is based on a cor-
relation in time, but lacks the time translational symmetry
even in equilibrium. Chaudhuri, Gangopadhyay, and Ray@7#
found a formula for a driven nonlinear oscillator~a system
with one degree of freedom!. It relates the Lyapunov expo-
nent to a correlation in the second derivative of the potential.
They reduce their equivalent of Eq.~2! to a simple harmonic
oscillator with a stochastic frequency and apply the standard
results of van Kampen@8#.

Many authors have been exploring the connection be-
tween transport coefficients and Lyapunov exponents. Some
examples are Gaspard and Nicolis@9#, who find a connection
between the diffusion coefficient of a Lorentz gas and its
positive Lyapunov exponents and the Kolmogorov entropy;
Evans, Cohen, and Morriss@10# found a conjugate pairing
rule between maximum and minimum Lyapunov exponents
and transport in nonequilibrium thermostatted molecular-
dynamics simulations and illustrated it with a viscosity com-
putation for particles interacting via an upshifted Lennard-
Jones potential; entropy production as minus the sum of the
Lyapunov exponents was noted by Hoover and Posch@11#
and discussed by Evans and Morriss in their treatise@12#;
and Chernovet al. @13# proved the sum rule for Ohm’s law
of entropy production in a Lorentz gas.

Section II of this paper presents anab initio theory for the
Lyapunov exponent of a many-body system obeying Hamil-
ton’s equations. In Sec. III, an explicit form for a dilute gas
or plasma, in the equilibrium limit, makes a connection with
correlation functions and hence transport coefficients~via the
fluctuation-dissipation theorem@14#!. The dilute gas exhibits
a 1

3 power rule. Section IV applies the theory, in detail, to a
one-component plasma.

II. CALCULATING THE LYAPUNOV EXPONENT
AB INITIO

A. Exact method

We shall develop an equation of motion for the square
infinitesimal distanceuD(t) u2 between two adjacent trajecto-

ries in phase space. In order that the problem should remain
linear, we actually work with the outer product ofD(t) with
itself, @D^D#(t). Taking an ensemble average of the equa-
tion of motion gives a new equation for the evolution of
^D^D&(t). Asymptotically, ^D^D&(t) will expand at twice
the Lyapunov rate. The steps of our solution are as follows.

~i! Form the outer product of the displacementD^D ~a
6N^6N component entity!.

~ii ! Solve the equation of motion

d

dt
@D^ D#~ t !5T~ t !•@D^ D#~ t !, ~6!

whereT[T^111^T is the fourth-rank, outer-product ver-
sion of the stability matrix appearing in Eq.~2!. T(t) is
shorthand forT„Y(t)…, the t dependence being through the
reference trajectoryY(t). The solution of Eq.~6! is, for-
mally, a time-ordered exponential

@D^ D#~ t !5expTS E
0

t

dt T~t! D •@D^ D#~0!. ~7!

~iii ! Average Eq.~7! over an ensemble of reference tra-
jectories and then differentiate to form a new differential
equation for̂ D^D&(t),

d

dt
^D^ D&~ t !5L~ t !•^D^ D&~ t !. ~8!

~iv! Evaluate L~`!5limt→`L(t), since for large times
L(t) should approach a constant value~i.e., forget the initial
conditions!.

~v! Find the eigenvaluen of L~`! with the largest real
part. SinceuD(t) u25Tr$@D^D#(t)%, the Lyapunov exponent
is

l5 1
2max Re~n!. ~9!

The rules for operating with outer-product operators are
@A^B#•@C^D#[@A•C#^@B•D# and dot products distribute
over terms in a sum.

B. Perturbation theory

We shall apply a standard perturbation technique@15,8,1#
to evaluateL~`! to second order@Eq. ~10!#. In the dilute gas
example~see Sec. III!, the zeroth- and first-order terms yield
imaginary eigenvalues only~corresponding to oscillations!.
The second-order term~which involves correlations! is es-
sential to reveal the Lyapunov expansion behavior.

Let T(t)5T01T1(t), where T0 is time independent and
T1(t) varies in time through a reference trajectory drawn
from an ensemble. Evaluating Eq.~8! formally to second
order inT1 gives an asymptotic evolution equation@15,1#

d

dt
^D^ D&~ t ! 5

t→`
FT01^T1~ t !&1E

0

`

dt^^T1~ t !•e
tT0
•T1

3~ t2t!•e2tT0&&G•^D^ D&~ t !, ~10!
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where ^^AB&&[k@A2^A&#@B2^B&#‹ is the correlation ofA
andB. The three terms in the square brackets are, respec-
tively, the zeroth-, first-, and second-order terms in the per-
turbation expansion ofL~`!. We considerT1(t) to be small
when the Kubo numberatc is small, wherea is the rms
magnitude ofT1(t) and tc is the characteristic autocorrela-
tion decay time scale.

The form ofL~`! in Eq. ~10! allows us to state the general
rule that the Lyapunov exponent is a function of time inte-
grals of correlation functions of the dynamical variables. The
next section develops the theory in detail for the case of a
dilute gas.

III. APPLICATION TO A DILUTE GAS
OR UNMAGNETIZED PLASMA

A. Perturbation from free particles

We consider a dilute gas or unmagnetized plasma with a
Hamiltonian of the formH51

2p•p1V~q!, where we have
taken the particles to have unit mass. We partition the stabil-
ity matrix, T of Eq. ~2! into a constant partT0 due to free-
particle ballistic motion and a time-dependent perturbation
T1(t) due to particle interactions, where

T05S 01 0
0D , T1~ t !5S 00 2Vqq(q~ t !)

0 D . ~11!

The corresponding outer product operators are

T05T0^111^T0 , T1~ t !5T1~ t ! ^111^T1~ t !. ~12!

The first-order term in Eq.~10! is simply

^T1~ t !&51^ ^T1~ t !&1^T1~ t !& ^1. ~13!

We evaluate the exponential factor of the second-order term
by

etT05etT0^etT0. ~14!

For ballistic motion, using Eq.~11!, we have

etT05S 1t 0
1D . ~15!

In order to understand better the explicit form of the in-
tegrand in the second-order term of Eq.~10!, it is helpful to
‘‘flatten’’ the 6N^6N phase-space outer product into a four-
component column of 3N^3N outer products showing the
momenta and positions explicitly:

D^ D[S Dp^ Dp

Dp^ Dq

Dq^ Dp

Dq^ Dq

D . ~16!

In this representation the integrand in Eq.~10! becomes

^^T1~ t !•e
tT0
•T1~ t2t!•e2tT0&&

5S 2t2^^V0•Vt1V0
T
•Vt

T&& t^^V0•Vt2V0•Vt
T&& t^^V0

T
•Vt

T2V0
T
•Vt&& ^^V0•Vt

T1V0
T
•Vt&&

0 2t2^^V0
T
•Vt

T&& 2t2^^V0
T
•Vt&& t^^V0

T
•Vt1V0

T
•Vt

T&&

0 2t2^^V0•Vt
T&& 2t2^^V0•Vt&& t^^V0•Vt

T1V0•Vt&&

0 0 0 0

D , ~17!

whereVt[1^Vqq(q~t2t!…, and its transpose isVt
T[Vqq(q(t

2t)…^1. The elements of the matrix in Eq.~17! have the
structure of 1,t, or t2, times a correlation function. The
correlation functions are of two types:

^^V0•Vt&&51^ ^^Vqq(q~ t !…•Vqq(q~ t2t!…&&, ~18!

where the correlation itself has rank 2, and rank-4 terms of
the form

^^V0
T
•Vt&&5^^Vqq(q~ t !…^Vqq(q~ t2t!…&&. ~19!

It is important to note thatq~t2t! is just an earlier point of
the trajectory specified byq(t). The trace back in time must
be done before averaging over the ensemble of the
$p(t),q(t)% that define the reference trajectories.

B. Equilibrium ensemble averaging

The next step is to average over an ensemble of reference
trajectories—equilibrium here—in order to show the relation

to other statistical quantities. We shall use the following con-
ventions: unsubscriptedp and q will represent the 3N-
dimensional vectors of momenta and positions of all the par-
ticles. When we use subscripts, these will label the
coordinates of a particular particle. For example,pi is the
three-momentum vector for particlei .

A dilute monatomic gas in equilibrium is, on average,
both isotropic and time-translational invariant. The time-
translational invariance allows us to replacet by 0
in Eqs. ~13! and ~17!. The rotational isotropy applies to
the 333 submatrices~labeled by pairs of particlesi and
j ! and 333^333 fourth-rank tensors of the form
^Vqiqj

(0)^Vqkql
(2t)&. We shall assume thatV~q! can be

expressed as a function of theN(N21)/2 pair differences in
particle coordinates~qi2qj !. With this conditionVqiqj

is a
symmetric matrix even wheniÞ j .

In Eq. ~13! the rotational isotropy simplifies each subma-
trix to

^Vqiqj
~0!&5 1

3 ^Tr@Vqiqj
~0!#&1[v i j

21. ~20!
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Similarly, each submatrix in Eq.~18! averages to

^^Vqq(q~0!…•Vqq(q~2t!…&& i j

5 1
3 (
k51

N

^^Tr@Vqiqk
(q~0!…•Vqkqj

„q~2t!…#&&1

[ci j ~t!1. ~21!

Rotationally averaging the fourth-rank subtensor~see Ap-
pendix A! of Eq. ~19! gives

^^V0
T

^Vt&& i jkl5ai jkl ~t!I1bi jkl ~t!J, ~22!

where the 3333333 tensors areJabgd5dagdbd1daddbg and
I[1^1, and the coefficients, labeled by particles andt, are

ai jkl ~t!5 1
15$2^^Tr@Vqiqj

(q~0!…#Tr@Vqkql
(q~2t!…#&&

2^^Tr@Vqiqj
(q~0!…•Vqkql

(q~2t!…#&&% ~23!

and

bi jkl ~t!5 1
30$2^^Tr@Vqiqj

(q~0!…#Tr@Vqkql
(q~2t!…#&&

13^^Tr@Vqiqj
(q~0!…•Vqkql

(q~2t!…#&&%. ~24!

C. Pairwise additive potential

To make further progress with the second-order term we
shall assume that the potential energy is particle pairwise
additive and the pair interaction has finite range. Examples
of such forces are Lennard-Jones and screened Coulomb.
The finite range allows us to neglect contributions to the
correlation averages from neighbors outside a small interac-
tion volumes. Since we are dealing with structureless par-
ticles, the potential energy between the paira andb has the
form f~uqa2qbu!. The total potential energy is then

V5 1
2 (
a51

N

(
b51

N

f~ uqa2qbu! ~25!

and

Vqiqj
5d i j(

bÞ i

N
]2

]qi
2 f~ uqi2qbu!2~12d i j !

]2

]qi
2 f~ uqi2qj u!.

~26!

Under the dilute gas assumption we may neglect intrinsic
three- and four-body correlations, that is, we may neglect
correlations where the two particle pairs are not identical.
For example, we shall take

K K ]2

]qi
2 f(uqi~0!2qj~0!u…•

]2

]qk
2 f„uqk~2t!2ql~2t!u…L L

50, $ i , j %Þ$k,l %. ~27!

Each particle pair contributesO(sn/N) to the average, where
n is the mean particle density. Discarding termsO(1/N)
leaves justv i i

2 , cii ~t!, aiii i ~t!, andbiii i ~t!. The same assump-
tions also give

cii ~t!52@aiii i ~t!14biii i ~t!#. ~28!

With these simplifications, the differential equation~10! de-
couples by a particle.

D. Eigenvalues of separation evolution

The problem has been reduced to finding the eigenvalues
of a single-particle block that can be thought of as a 36336
matrix. The problem further diagonalizes into nine 434 sub-
matrices according to the eigendirections of the operatorJ.
The only eigendirection that can contribute to^uDu2& has ei-
genvalue@1# J54 ~see Appendix B!. Therefore, the fourth-
rank coefficients will appear only in the combination
aiii i (t)14biii i (t)5

1
2cii ~t!.

Adopting the notation

cm[E
0

`

dt tmcii ~t!, m50, 1, or 2, ~29!

the resulting matrix whose eigenvalues we seek is

S 0
1
1
0

0
0
0
1

0
0
0
1

0
0
0
0
D 1S 0

0
0
0

2v i i
2

0
0
0

2v i i
2

0
0
0

0
2v i i

2

2v i i
2

0
D

1S 22c2
0
0
0

1
2c1

2c2
2 1

2c2
0

1
2c1

2 1
2c2

2c2
0

c0
3
2c1
3
2c1
0

D . ~30!

The eigenvaluesn of matrix ~30! are discussed in Appendix
C. The Lyapunov exponent is given byl51

2 max Re~n!.
Typically, each gas particle finds itself in a cage formed by
all the others. On average it experiences a potential well
whose bottom is at the center of the cage. Hence the second
derivative sign impliesv i i

2>0, which, by itself, would make
n imaginary.~For the Coulomb force,v i i

250.! In addition, if
the autocorrelation time is short, thenc0 dominates terms
with c1 or c2 in the secular equation. If we take this to be so,
then there is indeed a solution with positive Re~n!, namely,
n@2c0#

1/3. Hence the Lyapunov exponent for a dilute gas~or
unmagnetized plasma! in equilibrium is given by

l5Fc04 G1/35F16 E
0

`

dt^^Tr@Vqiqi
~0!•Vqiqi

~2t!#&&G1/3.
~31!

E. Lyapunov exponent and fluctuations

Equation~31! shows the equilibrium Lyapunov exponent
to be proportional to the cube root of the integral of an au-
tocorrelation function of the fluctuations of a dynamical vari-
able. The fluctuation-dissipation theorem@14,16# relates
linear-response functions to corresponding correlation inte-
grals. The correlation in Eq.~31! is for a single-particle prop-
erty. The intensities and correlation time scales of different
single-particle properties may be expected to vary in the
same way with changes in system parameters such as tem-

54 6087FLUCTUATIONS AND THE MANY-BODY LYAPUNOV EXPONENT



perature and pressure. In particular, the self-diffusion coeffi-
cient is proportional to the time integral of a particle’s ve-
locity autocorrelation

D5 1
3 E

0

`

dt^^v~0!•v~t!&&. ~32!

~Note that this quantity is distinct from the spatial diffusion
coefficient, which becomes large in the collisionless limit
while self-diffusion does not.! This leads us to suggests that
the Lyapunov exponent to the cube root of the diffusion
coefficient

l

vp
}F D

vpai
2G1/3, ~33!

wherevp is a characteristic interaction frequency andai is a
characteristic inter-particle distance.

In numerical simulations, Nishihara and co-workers@2–4#
measured both the Lyapunov exponent and the self-diffusion
coefficient for the ions in a one-component plasma. The re-
sults, plotted in Fig. 2, clearly show a13 power dependence of
the Lyapunov exponent on the diffusion coefficient over
nearly three decades of diffusion data. This1

3 power relation-
ship with a transport coefficient is a consequence of the di-
lute gas Lyapunov exponent theory.

IV. ONE-COMPONENT PLASMA EXAMPLE

We now apply the theory to a one-component plasma.
The plasma will comprise protons of massmp and chargeqe
in a uniform neutralizing background. The interaction is via
the Coulomb potentialf~r!5q e

2/r . The rotational average of
the second derivative of this potential is identically zero be-
cause¹2~1/r !50. The Coulomb force gives rise to long-
range correlations among the ions, leading to Debye screen-
ing. With care, one can evaluate Eq.~31! using the Coulomb
potential and an ensemble with a radial distribution function
g(r i j )5np2[k D

2 /4p]exp(2kDr i j )/r i j . ~np is the ion num-
ber density andkD is the inverse Debye screening length.!
However, in the exposition that follows, we shall get the
same answer by absorbing the pair correlation function into

an effective Debye-screened potential

f~r!5
qe
2

r
e2kDr ~34!

and using an uncorrelated ensemble. For convenience, we
shall use units withmp51 and then restore mass units at the
end.

The potential energy of the ion system is given by

V5 1
2 (
a51

N

(
b51

N

f~ uqa2qbu!. ~35!

Since the plasma is supposed to be dilute we shall treat the
interaction between two ions as ballistic,

qi~2t!5qi~0!2pit. ~36!

With this approximation it is most convenient to use a Fou-
rier representation of the second derivative of the potential
energy,

Vqiqi
~2t!52(

bÞ i
E d3k kk f̃~k!eik•@qi2qb#e2 ik•@pi2pb#t,

~37!

where the Fourier transform off~r! is

f̃~k!5
4pqe

2

@2p#3
1

k21kD
2 ~38!

and we have writtenqi[qi~0!.
In averaging the cross correlation cii (t)

[ 2
3^^Tr@Vqiqi

(0)•Vqiqi
(2t)#&&, we shall use an ensemble

distribution uniform in space and Maxwellian in momentum.
We shall neglect the correlation distribution~beyond our ef-
fective potential! because the residual effects of this are of a
higher order than the term itself. The multiparticle distribu-
tion function thus factors into a product of one-particle dis-
tributions

f 1~qi ,pi !5
np
N

@2pTp#
23/2 expS 2

pi
2

2Tp
D , ~39!

wherenp is the ion density andTp is the ion temperature in
energy units. The cross correlation contains a double sum
over ions different fromi arising from the double application
of Eq. ~37!. When the two ions are different, the spatial
integral of the ensemble average on the complex exponential
factor yields

1

@2p#3
E d3qbe

ik•qb5d3~k!. ~40!

The d3~k! is multiplied by k so that result is zero. This is
consistent with the assumption, used in the dilute gas theory,
that disjoint pairs of particles are uncorrelated. Hence only
theN21 diagonal terms in the double sum contribute to the
correlationcii ~t!. They evaluate identically to give

FIG. 2. Lyapunov exponent versus diffusion coefficient for
plasma parameterG values between 1 and 150. The data were com-
puted for a one-component plasma by Nishihara and co-workers
@2–4#. The line isl5aD1/3, the law suggested by the theory.
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cii ~t!5
2

3
@N21#

@4p#2qe
4

@2p#6

3FnpN G2@2pTp#
23E d3pid

3pb

3expS 2
pi
21pb

2

2Tp
D E d3qid

3qbE d3k0E d3kt

3
@k0•kt#

2

@k0
21kD

2 #@kt
21kD

2 #
ei @k01kt#•@qi2qb#e2 ikt•@pi2pb#t.

~41!

Changing the order of integration to perform the real space
~qi and qb! integrals first yields two factors ofd3~k01kt!.
Taking into account the finite real volume we should inter-
pret the space integrals as

E d3qid
3qbe

i @k01kt#•@qi2qb#5@2p#3
N

np
d3~k01kt!.

~42!

Performing thek0 triple integral then setsk[kt52k0. Using
these results in Eq.~41!, and neglecting 1 compared toN
gives

cii ~t!5

2
3 @4p#2qe

4np
@2p#3@2pTp#

3 E d3pid
3pbexpS 2

pi
21pb

2

2Tp
D

3E d3k
k4

@k21kD
2 #2

e2 ik•@pi2pb#t. ~43!

Next we perform the momentum integrals

cii ~t!5
2

3

@4p#2qe
4np

@2p#3
E d3k

k4

@k21kD
2 #2

exp~2Tpk
2t2!

~44!

and the angular part of thek integral to get

cii ~t!5
16

3
qe
4npE dk

k6

@k21kD
2 #2

exp~2Tpk
2t2!.

~45!

The cross correlation in Eq.~31! is the time integral of
cii ~t!. Performing this integral yields

c05
16

3
qe
4npE dk

k6

@k21kD
2 #2

p1/2mp
1/2

2Tp
1/2k

, ~46!

where we have also restored mass units by writingTp/mp
everywhereTp occurred. This last integral diverges ask→`.
The ions almost never have encounters at very short dis-
tances, however~and when they do, the ballistic encounter
approximation fails severely!. We shall therefore truncate the
integral at an upper limit ofkmax. It is also convenient to
write the integral in a dimensionless form using a scaled
variablex5k/kD and to rewrite the dimensioned coefficients
in terms of the plasma frequency, given by

v p
254pnpq e

2/mp5k D
2 (Tp/mp), and the dimensionless

plasma parameterG5[(4p/3)np]
1/3(q e

2/Tp)[q e
2/aiTp . The

result is

c05mp
2vp

3 2

31/2p1/2 G3/2E
0

xmax
dx

x5

@x211#2
. ~47!

Evaluating the integral and substituting into Eq.~31! gives
the Lyapunov exponent

l5F c0
4mp

2G1/35vpF 2

31/2p1/2 G3/2G1/3
3F2

1

2

xmax
4

11xmax
2 1xmax

2 2 ln~11xmax
2 !G1/3.

~48!

The choice ofkmax ~and hencexmax! must be determined
by physical considerations. Variations in the plasma with a
half wavelength smaller than the order of the interion spac-
ing ai are not meaningful. We therefore suggest a cutoff
kmax5p/ai , that is,

xmax[
kmax
kD

5
p

31/2G1/2. ~49!

We shall now consider some limiting plasma cases.

A. Dilute plasma limit

In the limit of a hot or sparse plasma whose plasma pa-
rameterG!1, we havexmax@1 and the term in the last set of
square brackets in Eq.~48! goes asymptotically asxmax

2 /2,
giving us a plasma parameter dependence of

l

vp
}G1/6 for G!1. ~50!

B. Liquid plasma limit

In the cold dense liquid plasma limit, whenG*1, we have
xmax,1 and the term in the last set of square brackets in Eq.
~48! goes asymptotically asxmax

6 /6, giving us a plasma pa-
rameter dependence of

l

vp
}G21/2 for G@1. ~51!

V. COMPARISON WITH NUMERICAL SIMULATIONS

Nishiharaet al. @3,4# have used theSCOPEparticle-particle
particle-mesh program to simulate a one-component plasma
in equilibrium for a range of values of the plasma parameter
G. The program was adapted to calculate the Lyapunov ex-
ponent by following the evolution of two initial conditions
differing slightly from one another. For 170.G*1 their re-
sults are consistent with theG21/2 law derived above. For
G&1 they find the Lyapunov exponent to be nearly constant.
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VI. DISCUSSION AND CONCLUSIONS

We have shown that the Lyapunov exponent of a dilute
gas in equilibrium is proportional to the cube root of a fluc-
tuation correlation function. One of the surprises of Fig. 2 is
that this cube root law holds even for fairly dense plasmas.
When estimating the eigenvalues of the matrix~30!, we as-
sumed that we could neglect terms withc1 andc2 compared
to c0. In the dense regime, these terms bear a simple relation
to one another. As a result, the secular equation in Appendix
C may be written simply in terms ofc0. The eigenvalue
remains proportional toc0

1/3, but with a different constant
numerical coefficient.

Other workers have found13 power rules between a diffu-
sion coefficient and an exponential path separation in differ-
ent contexts. Seki, Kitahara, and Nicolis@17# used a Lange-
vin equation to explore diffusion in turbulent media. For
intermediate times, they found that adjacent fluid elements
separate exponentially at a rate proportional to the1

3 power
of the long-term diffusion constant. In Dupree’s@18# theory
of plasma turbulence, a mode’s exponential growth rate is
proportional to the13 power of the velocity space diffusion
constant, which is proportional to the turbulent fluctuations.

The theory developed in this paper might find application
in other many-body systems, such as the cosmological scat-
tering of photons by gravitational lensing, where Fukushige
et al. @19# have noted an exponential path divergence for
adjacent light rays undergoing multiple scattering. This
theory might also be applied to study the diffusion of trace
elements due to environmental fluctuations.

This paper developed theab initio Lyapunov exponent
theory for the example of a dilute gas near equilibrium. In a
future paper we plan to develop an example for lattice vibra-
tions of an anharmonic crystal.

Our theory establishes firmly the connection between the
many-body Lyapunov exponent and fluctuations. We believe
that the Lyapunov expansion rate should be regarded as a
system parameter. Since it is readily definable almost any-
where in phase space, it can provide a link between states
close to and far from equilibrium.
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APPENDIX A: ROTATIONAL AVERAGING
OF RANK FOUR TENSORS

This appendix considers the rotational averaging of a
fourth-rank tensor with outer product formA^B. In Carte-
sian components, the rotationally averaged outer-product
tensor must have the form of an isotropic fourth-rank tensor

^A^B&abgd5adabdgd1bdagdbd1cdaddbg . ~A1!

To evaluate the coefficientsa, b, and c, we can perform
tracing ~contracting! over pairs of indices, since the trace
operation commutes with a rotational average:

^Tr~A!Tr~B!&59a13b13c, a with b; g with d
~A2!

^Tr~AT
•B!&53a19b13c, a with g; b with d

~A3!

^Tr~A•B!&53a13b19c;a with d; b with g.
~A4!

Solving for the coefficients gives

a5 1
30 @4^Tr~A!Tr~B!&2^Tr~AT

•B!&2^Tr~A•B!&#,
~A5!

b5 1
30 @4^Tr~AT

•B!&2^Tr~A•B!&2^Tr~A!Tr~B!&#,
~A6!

c5 1
30 @4^Tr~A•B!&2^Tr~AT

•B!&2^Tr~A!Tr~B!&#.
~A7!

If eitherA or B is symmetric, then the solution further sim-
plifies to

^A^B&5aI1bJ, ~A8!

where

Jabgd5dagdbd1daddbg , I[1^1, ~A9!

a5 1
15 @2^Tr~A!Tr~B!&2^Tr~A•B!&#, ~A10!

and

b5 1
30 @2^Tr~A!Tr~B!&13^Tr~A•B!&#. ~A11!

APPENDIX B: EIGENVALUES
OF NON-OUTER-PRODUCT

RANK-4 OPERATOR

The isotropic fourth-rank tensorJ, defined in Appendix A,

Jagbd5gdabdgd1daddbg , ~B1!

does not have an outer-product form with respect to opera-
tions on a second-rank tensorXgd . We wish to find its eigen-
valueJ and eigentensorX solutions of the equation

JagbdXgd5JXab , ~B2!

where a repeated pair of indices implies contraction over that
pair.

By inspection we can identify the eigentensor with eigen-
valueJ54,

Xgd5dgd

[@ x̂^ 1 ŷ^ ŷ1 ẑ^ ẑ#gd , ~B3!

wherex̂, ŷ, andẑ are the Cartesian unit vectors. In the coor-
dinate system wherex̂a5d1a, ŷa5d2a, and, ẑa5d3a, we can
express the five eigentensors with eigenvalueJ51 as

@ x̂^ ŷ1 ŷ^ x̂#, @ ŷ^ ẑ1 ẑ^ ŷ#, @ ẑ^ x̂1 x̂^ ẑ#,
~B4!

@ x̂^ x̂2 ŷ^ ŷ#, @ ŷ^ ŷ2 ẑ^ ẑ#.
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There are three eigentensors with eigenvalueJ521,

@ x̂^ ŷ2 ŷ^ x̂#, @ ŷ^ ẑ2 ẑ^ ŷ#, @ ẑ^ x̂2 x̂^ ẑ#. ~B5!

Only the J54 eigentensor in~B3! has a nonzero trace that
can contribute to the mean-square length^uDu2&.

APPENDIX C: EIGENVALUES OF DILUTE GAS
LYAPUNOV MATRIX

The 434 matrix in ~30! is the asymptotic operator that
gives the Lyapunov expansion. The expansion will be domi-
nated by the eigenvaluen with the largest real part. Since the
operator is part of the evolution equation for the square of
the phase-space separation, the Lyapunov exponent is half
this eigenvalue

l5 1
2max Re~n!. ~C1!

The secular equation for the eigenvalues of~30! is

detU2n22c2
1
1
0

1
2c12v i i

2

2n2c2
2 1

2c2
1

1
2c12v i i

2

2 1
2c2

2n2c2
1

c0
3
2c12v i i

2

3
2c12v i i

2

2n

U50,

~C2!

which expands to

@n1 1
2c2#$n

31 7
2c2n

21@3c2
224~c12v i i

2 !#n26c1c222c0%

50. ~C3!

It is instructive to analyze the solutions of equation~C3!
for various ranges of the parameters

n5H 0, @2c0#
1/3, or @2c0#

1/3e62ip/3

0, ,or 62@c12v i i
2 #1/2

0, 2 1
2c2 , 2 3

2c2 , or 22c2

for c25c15v i i
250

for c25c050
for c05c15v i i

250.

~C4a!
~C4b!
~C4c!

In ~C4c!, n<0, so it cannot produce a Lyapunov expansion.
Case~C4b! can have a positiven if c1.v i i

2 ~otherwise the
nonzero eigenvalues are imaginary!. Case~C4a! has one un-
equivocally positive solution, namely,n5@2c0#

1/3.
To consider the relative magnitudes of the parameters we

introduce the correlation time,tc , which we wish to treat as
a small parameter in the same sense that the Kubo number
atc was a small parameter in Sec. II B and Ref.@15#. Then
we may expect

c1.tcc0 , c2.
1
2 tc

2c0 . ~C5!

Suppose that

n5n01bn11b2n21••• , ~C6!

whereb is used to keep track of perturbation order and we

shall set it to 1 at the end. In Eq.~C3! we shall rewritec2 as
b2c2 andc1 asbc1. We shall also takev i i

25O(b). Equating
coefficients of powers ofb gives

n0
322c050, ~C7!

3n0
2n124@c12v i i

2 #n050, ~C8!

etc., which give us

n05@2c0#
1/3, n15

4

3@2c0#
1/3 @c12v i i

2 #. ~C9!

To leading order, then,

l5 1
2 @2c0#

1/3.
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